

Comparing growth and viral damage of native and non-native Humulus *lupulus* varieties

Nautica Welch and Dr. George Vourlitis, Department of Biological Sciences, California State University, San Marcos

Introduction

- Humulus lupulus (hops) plants are grown in southern California for the brewing industry; however, it is unclear which strains grow best in our climate.
- We measured the virus damage and the relative growth rate (RGR) of 10 different strains, 5 native to the US and 5 nonnative, to see which strains grown best and had less viral damage.

Results and Discussion

Methods

• We measured the height and width of each plant on 7/11/23 and on 9/12/23. These data were used to calculate the volume (V) of each plant.

Fig. 1. The plants when they first arrived to our CSUSM greenhouse 6/12/20023

Fig. 2 The plants when they reached

a 1-way ANOVA 0.00 --0.02 -Colu Come Fugg Brew Hall Neo Sazz Sora Sout Zeus 6 – F_{9.90}=3.97 (p<0.001) Fig. 5. A boxplot of the percent LN_Damage leaf damage for each strain. Data were LNtransformed to fulfill the assumptions of ANOVA. The Fstatistic is from a

the to the trellis line 8/11/2023

- Plant growth rates were calculated as a relative growth rate (RGR) = $[LN(V_2) - LN(V_1)] / (t_2 - t_1)$, where V_2 and V_1 are the plant volumes measured on day t_2 (9/12) and t_1 (7/11), respectively.
- Digital images were made from leaves collected from each plant to estimate the proportion of the leaves damaged by viruses (Fig. 3).
- Differences in the RGR and percent leaf damage were analyzed using a 1-way ANOVA. Differences in RGR and percent leaf damage between US and non-US strains were analyzed using a 2sample t-test.

Brew Colu Come Fugg Hall Sazz Sora Sout Zeus Neo

Fig. 6. Mean (\pm se; n = 5 strains) RGR for strains native to the US (US) and not native the US (NUS). Differences in the means are statistically significant at a p < 0.10

Fig. 7. Mean (<u>+</u>se; n = 5 strains) LN-percent leaf damage for strains native to the US (US) and not native the US (NUS). Differences in the means are statistically significant at a p < 0.05

1-way ANOVA

Original image

False color image of damaged leaf area

Binary image of damaged area calculation

% Leaf Damage = $\frac{\text{Area damaged}}{\text{Total leaf area}} \times 100$

Fig. 3. An example of how the percent leaf damage was estimated. Leaf images were transformed to a false color image and then to a binary image for the calculation of total and damaged leaf area. Percent leaf damage was calculated as the area of leaf damage divided by the total leaf area (x 100)

Conclusions

- There was a significance difference in the RGR of different strains. On average, Sazz had the highest RGR and Hallertauer MF (Hall) and Sorachi Ace (Sora) had the lowest RGR (Fig. 4).
- Percent leaf damage varied significantly between strains, with Hall having the highest leaf damage and Brewer's Gold (Brew) the lowest (Fig. 5).
- Strains native to the US had slightly higher RGR than non-US strains (Fig. 6), while non-US strains had significantly higher leaf damage than strains developed in the US (Fig. 7).

This research was sponsored by a USDA-NIFA grant to Drs. Aurn Sethuraman, James Jancovich, and George Vourlitis